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• Chapeau Question 10: “How has low yield monitoring capability been improved through results of 
this [the LYNM-DN] program?” demonstrates that we need to quantify our overall gain in performance.

• Measure changes in performance: Offer a general, signature-agnostic model that measures 
relative gains sourced by each FA to gains in the event processing pipeline, over a baseline.

• Three typologies of change: agent, workflow topology, and agent burdens

The Event Processing Pipeline (EPP) Model Discussion
The problem

Unincluded in 
auto-processing
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Conceptual Model for DNE23 / Event 
Processing Pipeline Workflow

From Acquisition to Event Characterization
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Problem: Quantify Gains in Event Processing Success (1/6)

background

background

target source

dead channel

Data acquisition

Signal detection

Event association

Source location

𝑃𝑔
𝐿𝑔

Discrimination

The DNE23 Event Processing Pipeline proceeds as a set
of analysis tasks to process and interpret signatures of
target sources (like a LY-UNE). One goal of LYNM is to
increase the probability that we can collectively identify and
characterize this target source (with measurable error)

Identification
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background

background

target source

dead channel

Data acquisition

Signal detection

Event association

Source location

𝑃𝑔
𝐿𝑔

Discrimination

Reduce false attribution rates, 
even with more data

Reduce thresholds at which we 
can identify LY signatures

Increase our predictive capability/ 
forecast what will detect and miss

The DNE23 Event Processing Pipeline proceeds as a set
of analysis tasks to process and interpret signatures of
target sources (like a LY-UNE). One goal of LYNM is to
increase the probability that we can collectively identify and
characterize this target source (with measurable error)

Problem: Quantify Gains in Event Processing Success (2/6)
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background

background

target source

dead channel
𝑃𝑔
𝐿𝑔

Data acquisition

Signal detection

Event association

Source location

Discrimination

Identification

DNE Distilled Science Question: How does monitoring
improve if the success probability (define that later) of
constituent monitoring functions increase? Example: how
does improved signal association (fewer false events) lead
to the more confident identification of a UNE?

Problem: Quantify Gains in Event Processing Success (3/6)
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background

background

target source

dead channel
𝑃𝑔
𝐿𝑔

Data acquisition

Signal detection

Event association

Source location

Discrimination

Identification
Before example association improvement:

Problem: Quantify Gains in Event Processing Success (4/6)
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𝑃𝑔
𝐿𝑔

Data acquisition

Signal detection

Source location

Discrimination

Identification

background

background

target source

dead channel
Event association

After example association improvement:

Problem: Quantify Gains in Event Processing Success (5/6)
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𝑃𝑔
𝐿𝑔

Data acquisition

Signal detection

Source location

Discrimination

Identification

Need: A high level model that quantifies how changes in the
overall probability of the event processing success relate to
constituent changes in monitoring function success. This
example conceptually shows that improved association
improved UNE identification

background

background

target source

dead channel
Event association

Problem: Quantify Gains in Event Processing Success (6/6)
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Abstract Model for the Event 
Processing Pipeline

Reliability Block Diagrams model Acquisition to 
Event Characterization Efforts
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An Event Processing Pipeline Reliability Model (1/3)

𝑝!"

Monitoring 
Function 1

Monitoring 
Function 2

𝑝#$

Monitoring 
Function 𝐿

𝑝%"

Monitoring 
Function 𝑀

⋯
⋯

⋯ ⋯

Data acquisition
and quality control

Signature detection Source location Source characterization

Agent 𝑗 achieves monitoring function 𝑘 with probability 1 − 𝑝&$, possibly in series or 
parallel with other agents

𝑝!"
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𝑝!"

Monitoring 
Function 1

Monitoring 
Function 2

𝑝#$

Monitoring 
Function 𝐿

𝑝%"

Monitoring 
Function 𝑀

⋯
⋯

⋯ ⋯

Agents: 1,2, … , 𝑗 … ,𝑀 perform sub-tasks for each monitoring function
Probabilities: 1 − 𝑝$& quantifies the rate at which agent 𝑗 achieves monitoring function 𝑘

∥ efforts 

⊥effort

Agent 𝑖 that completes Monitoring Function 2 with 
probability 𝑝!" < 1 is a single point of failure 

𝑝#$ = probability Agent 𝑗 completes 
function 𝐿 in parallel with another agent

An Event Processing Pipeline Reliability Model (2/3)
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𝑝!"
𝑝#$

𝑝%"

⋯
⋯

Pr' EEP = 1 −3
&()

%

1 −3
*()

+!

𝑝&*
∥

General form for the probability Pr' EPP that agents 
“fail” to complete the event processing pipeline to its final 
stage

𝑁! = 1𝑁) = 3 𝑁# = 2

Task 1 Task 2 Task 𝐿 Task 𝑀

𝑁%

Agent 𝑗 achieves monitoring function 𝑘 with probability 1 − 𝑝&$, possibly in series or 
parallel with other agents

𝑝!"

An Event Processing Pipeline Reliability Model (3/3)
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Qualitative Ideas for 
Success/Failure Rate Reporting

Association and Location Examples

Pr' EPP = 1 −3
&()

%

1 −3
*()

+!

𝑝&*
∥
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Association

Source 
Location

Semi-Empirical Measurements of Agent Improvement (1/3)  

𝑝 =
𝑁-.
𝑁/01

𝑝 =
𝑁1234
𝑁/01

Pr5

∆𝑚

�̂�)

Pr5

∆𝑚

𝑡#

𝑡#

�̂�)

�̂� =
∑6()) 𝑛6

𝑛7
∑6()) 𝑁6

�̂� =
∑6()) 𝐼6
𝑁7
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𝑡#, 𝑡$

𝑡#, 𝑡$Association

Source 
Location

Pr5

∆𝑚

Pr5

∆𝑚

Semi-Empirical Measurements of Agent Improvement (2/3)  

�̂�!

�̂�!

𝑝 =
𝑁1234
𝑁/01

�̂� =
∑6()! 𝑛6

𝑛7
∑6()! 𝑁6

𝑝 =
𝑁-.
𝑁/01

�̂� =
∑6()! 𝐼6
𝑁7



3/15/21 |   17Los Alamos National Laboratory

𝑡#, 𝑡$, 𝑡%

𝑡#, 𝑡$, 𝑡% Pr5

∆𝑚

�̂�8

Pr5

∆𝑚

�̂�8

Association

Source 
Location

Semi-Empirical Measurements of Agent Improvement (3/3)  

𝑝 =
𝑁1234
𝑁/01

�̂� =
∑6()8 𝑛6

𝑛7
∑6()8 𝑁6

𝑝 =
𝑁-.
𝑁/01

�̂� =
∑6()8 𝐼6
𝑁7
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Quantification of Gains 
and Losses for DNE23

Computing Focus Area Agnostic 
Success Probabilities
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Problem Statement

ΔPr! EPP

Pr!
(#) EPP

= 1 −
Pr!

(%) EPP

Pr!
(#) EPP

Formal Problem Statement: We quantify the relative gain to the LYNM-DN 
event processing probability Pr& EPP (system reliability) that results from 
improvement to constituent monitoring function performance:

ΔPr! EPP is the change in EPP success probability, from a baseline
success rate Pr!

(#) EPP .

Pr!
(%) EPP is the probability of EPP success, after a gain in a single

monitoring function’s success probability.
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Problem Statement; Types of Changes that Lead to EPP Change

Workflow efforts in series 
and in parallel can change 
achieve each monitoring 

function output

Researchers and their 
algorithms (agents) each 
have their own reliability 

value (success probability)

Resource limited teams 
use an SME as agents to 
work multiple monitoring 

functions (burdens)

1 2 3

ΔPr! EPP

Pr!
(#) EPP

= 1 −
Pr!

(%) EPP

Pr!
(#) EPP

Formal Problem Statement: We quantify the relative gain to the LYNM-DN 
event processing probability Pr& EPP (system reliability) that results from 
improvement to constituent monitoring function performance:
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Problem Solution: EPP Success Rates from a Single Agent

Agent Gain Measurably Improves EPP: SME 𝑖 measures a probabilistic gain 
𝛿𝑝 in their monitoring function algorithm “2” over its baseline 𝑝. The success 
rate of monitoring function “2” is Pr&

' 𝐶 . The relative improvement is:

If multiple monitoring functions measurably improve, we measure the
collective gain in monitoring capability as:

ΔPr& EPP = Pr&
' EPP .

!(#

)
−𝛿𝑝!
𝑝!

0
1 − Pr&

' 𝐶!
Pr&

' 𝐶!

$

ΔPr& EPP

Pr&
' EPP

=
−𝛿𝑝$*
𝑝$*

0
1 − Pr&

' 𝐶$
Pr&

' 𝐶$
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Example: Improvements to Signal 
Detection Measure Gain in EPP 

Success Rates
Improvements to a Correlation Detector 

Agent and EPP Improvement 



• Chemical explosion captured by 
multiple sensors that recorded 
multi-physics signatures

• No cataloged seismic event at 
USGS or IRIS, but my manual 
retrieval showed evident ground-
coupled surface waves 

• Will use exercise the signal 
detection monitoring function on 
waveforms that record this special 
event, with both a single channel 
correlation detector (the baseline), 
and then a three-channel 
correlation detector (agent gain)

Example: A Near Surface, East Coast Explosion “Special Event”
Signal Detection Problem
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Explosion seismogram, 
detector template Data infusion template Semi-empirical target data

Semi-Empirical Performance of Baseline and Improved Detector

𝑡)
𝑡!

𝑡&
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�̂� =
𝑁/234
𝑁/01

=
15
21

template

Step 1: Enumerate Detection Counts on Semi-Empirical Targets
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Baseline detector Improved detector

Step 2: Make Performance Curves to Quantify Detector “Success”
§ Run single channel (HHZ) detector over an 

SNR / relative magnitude grid
§ Ratio of true detection counts to total event 

count quantifies performance curve
§ Theory-count agreement quantifies 

predictive success

B G § Run three channel (ENZ) detector over an 
SNR / relative magnitude grid

§ Ratio of true detection counts to total event 
count quantifies performance curve

§ Theory-count agreement quantifies 
predictive success; detector more sensitive
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Step 2: Estimate Incremental Gain in Success Probability

Monitoring band of interest

Baseline detector

Improved detector
𝛿𝑝!"

Performance: 𝑝!"
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Step 3: Compute Relative Detector Improvement, 𝛿𝑝/𝑝 (1/2)

ΔPr& EPP

Pr&
' EPP

= −
𝛿𝑝$*
𝑝$*

0
1 − Pr&

' 𝐶$
Pr&

' 𝐶$

ΔPr& EPP

Pr&
' EPP

=
𝛿𝑝$*
𝑝$* − 1

1 − 𝑝$* = Pr&
' 𝐶$

If only agent 𝑖 works 
on signal detection:

ΔP
r "
EP
P

Pr
"#

EP
P
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Step 3: Compute Relative Detector Improvement, 𝛿𝑝/𝑝 (2/2)

ΔPr& EPP

Pr&
' EPP

= −
𝛿𝑝$*
𝑝$*

0
1 − Pr&

' 𝐶$
Pr&

' 𝐶$

1.8% ≤ 100% 0
𝛿𝑝$*
1 − 𝑝$*

≤ 38%

1 − 𝑝$* = Pr&
' 𝐶$

If only agent 𝑖 works 
on signal detection:

ΔP
r "
EP
P

Pr
"#

EP
P
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Appendices (A-D)

A. Vocabulary of Event Processing Pipeline 
Components 

B. Reliability Block Diagrams
C. Graph theory Relations to Enable Computation
D. Optimal EPP Agent Network Topologies 

(Graphs)
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A: Vocabulary of Event Processing 
Pipeline Components

Formal Definitions
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Agents are any number 1,2, … , 𝑗, … , 𝑁 of algorithms and/or subject matter experts (SMEs) 
that attempt monitoring function tasks. Example: a team of 10 researchers with 12 data 
processing algorithms collectively represent 𝑁 = 12 agents. Agent 1 and 𝑗 are each SMEs of 
the discrimination monitoring function.

Burdened agents refer to those agents in an EPP that attempt more than a single 
monitoring function to analyze the same special event. Example: An SME that applies 
algorithms to both signal detection and source location to data collected from the same 
underground explosion is a burdened agent.

Elements of Event Processing Pipeline (1/3)
Monitoring functions are a series of analysis tasks (1,2, … , 𝑘, … ,𝑀 ) that output parametric 
estimates of geophysical signatures and their sources, such that each task increases the 
cumulative knowledge of that source. Example: data acquisition, signal detection, 
association/event building, source location, discrimination, and identification are each (but 
perhaps not all) monitoring functions required to partially characterize an underground 
explosion source.
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Elements of Event Processing Pipeline (2/3)

Workflow topology: if failure of monitoring function 𝑘 − 1 causes failure of monitoring 
functions ≥ 𝑘, then functions 𝑘 − 1 and 𝑘 are in series (symbol ⊥). Monitoring function 𝑘 is 
completed in parallel (symbol ∥) by multiple agents if each agent can independently complete 
their task with nonzero probability, given input from function 𝑘 − 1 and requisite data. 
Example: a “single-point-of-failure" occurs if failure of Agent 𝑗 to perform association within a 
team of 𝑀 agents that work in series necessarily causes EPP failure.

Failure of Agent 𝑗 at monitoring function 𝑘 means that their data product or decision output 
includes sufficiently large errors such that following monitoring functions can only output 
errors that exceed some admissible bound. Example: Agent 𝑗 links infrasound waveforms that 
arrive at one array, which are sourced by an explosion, with infrasound waveforms that arrive 
at a second array, which are sourced by bolide. Agent 𝑗 then fails to achieve the association 
monitoring function.
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Elements of Event Processing Pipeline (3/3)

Workflow probability 𝑝&$ quantifies the rate that Agent 𝑗 independently fails to achieve 
monitoring function 𝑘, given requisite data. Probability 1 − 𝑝$& quantifies Agent 𝑗’s probability 
of achieving monitoring function 𝑘. Example: Agent 𝑗 processes waveform data of a located 
seismic source to compute a bandlimited, seismic phase ratio Pg/Lg discriminant with 
success rate 1 − 𝑝#$, in which discrimination is monitoring function 𝐿.
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B: Reliability Block Diagrams

Quantification of Parallel and Series 
Workflow Efforts
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Probability of Success of Agents in Series

Monitoring 
Function 𝐿

Agent 𝑗 fails to complete Monitoring Function 𝐿 with 
probability 𝑝+",

Monitoring function 𝐿 is strictly a failure or a success: 
Pr 9𝐿 + Pr 𝐿 = 1

Probability that monitoring function 𝐿 succeeds with 
𝑁+ agents working in series:

Pr 𝐿 =<
-(#

.!

1 − 𝑝+-,

𝑝+𝑝)

⋯

A series topology
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Probability of Success of Agents in Parallel

𝑝+

Monitoring 
Function 𝐿

⋯
⋯

𝑝)

Agent 𝑗 fails to complete Monitoring Function 𝐿 with 
probability 𝑝"

∥

Monitoring function 𝐿 is strictly a failure or a success: 
Pr 9𝐿 + Pr 𝐿 = 1

Probability that monitoring function 𝐿 succeeds with 
𝑁+agents working in parallel:

Pr 𝐿 = 1 −<
-(#

.!

𝑝+-
∥

A parallel topology
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Steady-State Probability of Failure for a “Burdened” Agent
If Agent 𝑗’s task load is 𝑁" > 1 monitoring functions, failure probability 𝑝"

∥ increases 
by amount 𝑁"𝜀", so that 𝑝"

∥= 𝑝", + 𝑁" − 1 𝜀"
∥

At least one agent works on each 
monitoring function (there are no “trivial” 
signal point failures)

No agent has a task load that exceeds 
the number of monitoring functions 𝑀

Burdened agents’ failure probability 
cannot exceed one: 𝜀"

∥ ≤ ⁄𝑝", (𝑀 − 1)

In practice: the failure probability of Agent 𝑗 is the product that their task succeeds, 
multiplied by a (Bernoulli, for example) probability that their task can be completed

𝑝+

Monitoring 
Function 𝐿

⋯
⋯

𝑝$

𝑝$

Monitoring 
Function 𝑀

⋯
⋯

𝑝)
Constraints
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“Dynamic” Failure of a “Burdened” Agent (1/3)
Failure probability 𝑝"

∥ must be 1 before characteristic completion time 𝜆𝜏 for a 
particular monitoring function. Then:  𝑝"

∥= 𝑝", 1 + 𝑁" − 1 𝜀"
∥ 0 𝑒01 203 for 𝑡 > 𝜏

The failure rate due to task splitting by a 
single agent should go to zero as time 
increases (note 𝜀"

∥ 0 )

Parallel task failure rate should be one (1) 
for times less than 𝜆𝜏

Burdened agents’ failure probability still 
cannot exceed one: 𝜀"

∥ ≤ ⁄𝑝", (𝑀 − 1)

We bound EPP failure rate of a particular monitoring function by assuming the upper 
bound on failure rate is achieved at time 𝑡 = 𝜏

𝑝+

Monitoring 
Function 𝐿

⋯
⋯

𝑝$

𝑝$

Monitoring 
Function 𝑀

⋯
⋯

𝑝)
Constraints
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“Dynamic” Failure of a “Burdened” Agent (2/3)
Scaling arguments on burden can define the exponential decay term 𝜆. The dynamic failure 

probability for 𝑡 > 𝜏 :  𝑝$
∥= 𝑝$9 1 + 1 − 𝑝$9 𝑒

:);
$%('()
'(*+

; 6:<
exponentially scales with task load

𝑝+

Monitoring 
Function 𝐿

⋯
⋯

𝑝$

𝑝$

Monitoring 
Function 𝑀

⋯
⋯

𝑝) The failure rate due to task splitting by a 
single agent should go to zero as time 
increases (note 𝜀"

∥ 0 )

Parallel task failure rate should be one (1) 
for times less than 𝜆𝜏

Burdened agents’ failure probability still 
cannot exceed one: 𝜀"

∥ ≤ ⁄𝑝", (𝑀 − 1)

Constraints

We bound EPP failure rate of a particular monitoring function by assuming the upper 
bound on failure rate is achieved at time 𝑡 = 𝜏
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“Dynamic” Failure of a “Burdened” Agent (3/3)
Scaling arguments on burden can define the exponential decay term 𝜆. The dynamic failure 

probability for 𝑡 > 𝜏 :  𝑝$
∥= 𝑝$9 1 + 1 − 𝑝$9 𝑒

:);
$%('()
'(*+

; 6:<
exponentially scales with task load

𝑝+

Monitoring 
Function 𝐿

⋯
⋯

𝑝$

𝑝$

Monitoring 
Function 𝑀

⋯
⋯

𝑝) The failure rate due to task splitting by a 
single agent should go to zero as time 
increases (note 𝜀"

∥ 0 )

Parallel task failure rate should be one (1) 
for times less than 𝜆𝜏

Burdened agents’ failure probability still 
cannot exceed one: 𝜀"

∥ ≤ ⁄𝑝", (𝑀 − 1)

Constraints

We bound EPP failure rate of a particular monitoring function by assuming the upper 
bound on failure rate is achieved at time 𝑡 = 𝜏

Agent and failure dynamics with coupled agents and feedbacks that quantify longer time-scale 
agent improvements comprise continuing work; remaining appendix excludes this content
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C: Graph Theory Relations to 
Enable Computation

Bipartite Graphs to Link Agents to 
Monitoring Functions



3/15/21 |   43Los Alamos National Laboratory

Agent and Monitoring Function Graphical Relations
Agent 
nodes

⋯

1

𝑘

2

3

⋯

𝑁

Monitoring 
function nodes

⋯

⋯
1

2

𝐿

𝑀 𝑨 = 𝟎 𝑩
𝑩& 𝟎

“Adjacency matrices” can represent
graphs; this matrices have 1’s to indicate if
nodes connect by edges, which can be
weighted to indicate the connection
significance.

Here, agents represent certain nodes and
monitoring functions represent other
nodes. Agents connect to monitoring
function nodes only, and the adjacency
matrix 𝑨 has a general form:

Bigraph
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Agent and Monitoring Function Graphical Relations
Agent 
nodes

⋯

1

𝑘

2

3

⋯

𝑁

Monitoring 
function nodes

⋯

⋯
1

2

𝐿

𝑀

Monitoring function 2

Agent 2

1 0 ⋯ 0 ⋯ 1
0 1 ⋯ 1 ⋯ 0
1 1 ⋯ 0 ⋯ 0

0 1 ⋯ 0 ⋯ 0

0 0 ⋯ 1 ⋯ 1

⋮ ⋮ ⋮ ⋮ ⋮⋮

⋮ ⋮ ⋮ ⋮ ⋮⋮

𝑀 columns index monitoring functions

𝑁
row

s index agents

𝑩 =

The bipartite matrix 𝑩 in the graph  
adjacency matrix:

Bigraph
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Compute PrG EPP Parameters from Graph Adjacency Matrix

𝟏4 = [1 … 1

𝑀 = size(𝑩, 2)

𝑁' = 𝟏& : 𝑩 : ;𝒆'

𝑁( = ;𝒆(& : 𝑩 : 𝟏

Number of monitoring functions (MFs):

Number of ∥ efforts directed at MF 𝑘:

Burden number for Agent 𝑗:

𝐵"! = O1,0,
Agent 𝑗 works MF 𝑘
otherwise

P𝒆"4 = [0 … 1 … 0]

… 1]
column 𝑗

Elementary vectors (𝑀 × 1 or 𝑁 × 1):

1 0 ⋯ 0 ⋯ 1
0 1 ⋯ 1 ⋯ 0
1 1 ⋯ 0 ⋯ 0

0 1 ⋯ 0 ⋯ 0

0 0 ⋯ 1 ⋯ 1

⋮ ⋮ ⋮ ⋮ ⋮⋮

⋮ ⋮ ⋮ ⋮ ⋮⋮

𝑁
row

s index agents

𝑀 columns index monitoring functions



3/15/21 |   46Los Alamos National Laboratory

Defining Failure Probabilities for Agents (1)
A team of SMEs includes six agents must complete seven monitoring functions to 
complete analyses of a special event located in a tectonic region.

1. Data acquisition and quality control (𝟏/ I 𝑩 I K𝒆)= 3)
2. Signature detection (𝟏/ I 𝑩 I K𝒆!= 2)
3. Association and event building (𝟏/ I 𝑩 I K𝒆8= 2)
4. Phase picking and location (𝟏/ I 𝑩 I K𝒆== 3)
5. Discrimination and screening (𝟏/ I 𝑩 I K𝒆>= 1)
6. Source identification (𝟏/ I 𝑩 I K𝒆?= 1)
7. Source characterization (𝟏/ I 𝑩 I K𝒆@= 2)

# Monitoring function (number of capable agents) 1 0 0
0 1 1

1 0 0
0 0 0

0
0

1 0 0
1 0 1

1 0 0
1 0 0

0
0

0 0 0
0 1 0

0 1 0
0 0 1

1
1

Agent 4 is an SME for data acquisition, waveform association, and location

Source characterization (Monitoring Function 7) can be performed by two SMEs

Highlighted example:

4

7
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Computational System to Estimate EPP Failure Rate (1/3)

Pr' EPP = 1 − 3
&()

A-B4(𝑩,!)

1 − 3
$()

𝟏,;𝑩;H𝒆!

𝑝&$9 + K𝒆$/ I 𝑩 I 𝟏 − 1 𝜀&$
∥

𝑩 = 𝑰. Each agent performs one monitoring function in series with other agents. Each 
stage presents a single point of failure:

𝑩 = 𝟏𝟏/. 𝑀 agents split efforts between all monitoring functions (this is maximum 
parallelization):

Special Case I: Pr' EPP for ⊥ Workflow

Pr' EPP = 1 −3
&()

%

1 − 𝑝&9 , where Agent 𝑘 works on function 𝑘

Special Case II: Pr' EPP for Peak ∥ Workflow

Pr' EPP = 1 −3
&()

%

1 −3
$()

%

𝑝&$9 + 𝑀 − 1 𝜀&$
∥
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Computational System to Estimate EPP Failure Rate (2/3)

Pr' EPP = 1 − 3
&()

A-B4(𝑩,!)

1 − 3
$()

𝟏,;𝑩;H𝒆!

𝑝&$9 + K𝒆$/ I 𝑩 I 𝟏 − 1 𝜀&$
∥

𝑩 = 𝑰. Each agent performs one monitoring function in series with other agents. Each 
stage presents a single point of failure (the ⊥ baseline):

𝑩 = 𝟏𝟏/. 𝑀 agents split efforts between all monitoring functions (the ∥ baseline):

Special Case I: Pr' EPP for ⊥ Workflow

Pr'9 EPP = 1 −3
&()

%

1 − 𝑝&9 , where Agent 𝑘 works on function 𝑘

Special Case II: Pr' EPP for Peak ∥ Workflow

Pr'
∥ EPP = 1 −3

&()

%

1 −3
$()

%

𝑝&$9 + 𝑀 − 1 𝜀&$
∥ → 1, as 𝜀&$

∥ → ⁄𝑝&$9 (𝑀 − 1)
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Computational System to Estimate EPP Failure Rate (3/3)

Pr' EPP = 1 − 3
&()

A-B4(𝑩,!)

1 − 3
$()

𝟏,;𝑩;H𝒆!

𝑝&$9 + K𝒆$/ I 𝑩 I 𝟏 − 1 𝜀&$
∥

𝑩 = 𝟏/. One agent performs every monitoring function in series. Each stage presents a 
single point of failure, and their effort is spilt between all monitoring functions

Special Case III: Pr' EPP for an “Army of One” (the AO2 Model)

Pr'𝟏 EPP = 1 −3
&()

%

1 − 𝑝&9 + 𝑀 − 1 𝜀&
∥ , where Agent 𝑘 works on function 𝑘,

𝜀!
∥ < ⁄𝑝!, (𝑀 − 1)
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Optimal EPP Agent Network 
Topologies (Graphs)

Maximize EPP Success Probability
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Computational System to Minimize EPP Failure Rate (1)

min
𝑩

Pr' EPP = 1 −max
𝑩

3
&()

A-B4(𝑩,!)

1 − 3
$()

𝟏,;𝑩;H𝒆!

𝑝&$9 + K𝒆$/ I 𝑩 I 𝟏 − 1 𝜀&$
∥

Task switching efficiency losses suggest that ∥ workflow is not unconditionally superior to 
baseline ⊥ workflow. We can show that certain parallel-processing failure probabilities 
bound any minimum failure probability solutions, if they exist.

Theorem: if efficacy loss 𝜀&$
∥ > 𝜀J2, for some 𝑗 and 𝜀J2, a matrix 𝑩 exists such that the 

probability of parallel workflow failure exceeds that of series workflow (proof is easy). 

To find: min
𝑩

Pr' EPP = [Pr' EPP K𝑩
≤ Pr'9 EPP ≤ lim

L(
∥→

):N!(
.

%:)

Pr'
∥ EPP = 1 ,

Our solution algorithm first finds Pr'9 EPP and |Pr' EPP 𝑩OK𝑩 , to then efficiently find _𝑩 .

we solve:

We therefore seek a matrix _𝑩 that reduces Pr' EPP relative to this Pr'9 EPP .
Specifically:


